Slide background

School of Chemical and Environmental Engineering

Now offering two distinct diplomas: Chemical Engineering and Environmental Engineering

Engineering Mechanics-Strength of Materials


School Chemical and Environmental Engineering
Course Level Undergraduate
Direction -
Course ID MECH 201 Semester 3rd
Course Category Required
Course Modules Instruction Hours per Week ECTS

Lectures, practice exercises and workshops

Th=3, E=1, L=1
Course Type  Special background
Instruction/Exam Language Greek
The course is offered to Erasmus students Yes
Course URL https// (in Greek)



Learning Outcomes

Upon successful completion of the course, a student will be able to: 

  1. recognize the principles of applied mechanics and the mechanical behavior of materials. 
  2. design the load bearing structure with optimal use of materials. 
  3. identify theories and concepts of physical mechanisms developed in the limiting states of strength of structures. 
  4. evaluate the behavior of structures mainly through the meaning of stiffness, strength, loading capacity, and durability. 
  5. assess basic mechanical properties of materials, their quantification through experimental techniques and how these properties characterize the response of the material.
General Competencies/Skills
  • Autonomous work
  • Decision-making
  • Teamwork


  1. Basic concepts of strength of materials. 
  2. Mechanical properties, stresses, and deformability of materials. 
  3. Laboratory tests of strength of materials. 
  4. Advanced methods of testing the strength of materials. 
  5. Optimum size of material cross-sections and safety factors. 
  6. Effect of sizing and selection of material for the construction of the load-bearing structure cross-sections on the design and economy of construction. 
  7. Introduction to the effect of axial forces on the sizing of structural elements. 
  8. Introduction to the effect of flexural moments on the sizing of structural elements. 
  9. Introduction to the effect of shear forces of flexural moments on the dimensioning of structural elements. 
  10. Laboratory testing of tensile strength of metals 
  11. Laboratory testing of compression strength of concrete. 
  12. Laboratory testing of flexural strength of wood in bending. 
  13. Effect of load bearing organism of a building on a given architectural floor plan using PC


Lecture Method Direct (face to face)
Use of Information and Communication Technology Use of Specialized software for the building design building. Learning progress support through E-class electronic platform
Instruction Organisation Activity Workload per Semester
- Lectures & tutorial exercises 52
- Lab 13
- Autonomous study 30
Course Total 100

Assessment Method

The score is divided into two main sections – written final examination 70%, Projects 20%, Laboratory reports 10%. More analytically:

  1. Written examination (0.7 of the total grade)
  2. Weekly Projects and reports of laboratory exercises (0.3 of the total grade)
    • Laboratory exercise description, 35%
    • Result presentation, 35%
    • Total results, 30%


Suggested bibliography :

  • Beer Ferdinand P., Johnston Russell E. Mechanics of Materials, 6th edition
  • Gere & Timoshenko, Mechanics of Materials, Stanford University, Monterey, California
  • William A. Nash, Theory and Problems of Strength of Materials, Amherst, Massachusetts, 1972
  • Harmer E. Davis – George Earl Troxel – Clement T. Wiskocil, The testing and inspection of Engineering Materials, London, 1964
  • V. Feodosiev, Resistance des Materiaux, Moscow, 1976

Relevant scientific journals:

  • Journal of Structural Engineering, ASCE, USA
  • Journal of Engineering Mechanics, Elsevier
  • Mechanics of Materials, Elsevier
  • Journal of Materials and Structures, Mathematical Science Publisher


Course Instructor: Professor K. Providakis (Faculty - ARCH)
Lectures: Professor K. Providakis (Faculty - ARCH)
Tutorial exercises: Professor K. Providakis (Faculty - ARCH)
Laboratory Exercises: I. Koutsogiannaki (LTS -ChEnvEng)